搜索"大" ,找到 5071部影视作品

偶像大师灰姑娘女孩小剧场 Extra Stage
导演:
/ 万球
主演:
/ 内详 
剧情:
  バンダイナムコエンターテインメントは、本日(3月24日)15時より、『アイドルマスターシンデレラガールズスターライトステージ』において、新作アニメ「アイドルマスター シンデレラガールズ劇場 Extra Stage」のゲーム内配信を開始した。
大独裁者1940
导演:
/ 查理·卓别林
剧情:
  影片讲述第一次世界大战,托曼尼亚王国独裁者辛格尔(查理·卓别林饰)上台。他的大肆扩张导致战乱不断民不聊生。并且他大搞阴谋政策,煽动民众对犹太人的敌对与仇恨,让犹太人民陷入水深火热的灾难之中。被征入伍的犹太人理发师查理(查理·卓别林饰)更是在这样的高压政策下难逃一劫。当查理逃出边境时,被驻守在这里的军队误认为是独裁者辛格尔,他趁机做了一场“为自由而战斗”的大演说。  该片是查理·卓别林的第一部有声片,摄于希特勒统治最为黑暗的时期,片中对他辛辣讽刺跟丑化比比皆是。本片荣获第13届(1941)奥斯卡最佳电影、最佳男主角、最佳男配角、最佳编剧、最佳音乐5项提名。
大审判
导演:
/ 西德尼·吕美特
剧情:
  弗兰克(保罗·纽曼 Paul Newman 饰)是一名律师,职业之外,他唯一的爱好就是喝酒,然而喝酒误事,导致弗兰克的业界名声一路走低。为了挽回声誉,弗兰克的朋友米基(杰克·瓦尔登 Jack Warden 饰)给他介绍了一宗大案,一名女子在教会医院中由于医疗事故而陷入了昏迷,弗兰克要帮助女子向医院讨回公道。  对于弗兰克来说,这是一桩难得的好差事,因为他只需要和被告达成庭外和解,就可以有不菲的赔偿金纳入囊中,可是,当他逐渐开始了解整个事件的来龙去脉之后,心中油然而生的正义感令他决定将这起事故追究到底。一边是弗兰克势单力薄,一边是有大企业撑腰的辩方律师,这场官司会迎来怎样的结局呢?
大弑之日
导演:
/ Cameron Macgowan
主演:
剧情:
  A typically quiet suburban community descends into chaos and paranoia after the delivery of mysterious red letters containing deadly instructions.
大太监国语
导演:
/ 罗永贤
剧情:
  李莲英(黎耀祥 饰)与安德海(曹永廉 饰)同被前朝老太监刘多生(钟景辉 饰)收为徒弟。数年后,李莲英只是景仁宫中侍奉待罪妃子婉太嫔(李诗韵 饰)的一名小太监,而安德海却为西宫太后慈禧(米雪 饰)身边的红人。御药房太监姚双喜(黄浩然 饰)因出宫探母一事得罪总管太监陈福(岳华 饰)的舅甥彭三顺(陈国邦 饰),险些丧命。幸被李莲英所救,两人结为挚友。太监彭三顺睚眦必报,此后处处为难李莲英。婉太嫔在太监陈福的挑唆下,想起自己皇儿死因的蹊跷之处。恭亲王(张国强 饰)不顾慈禧阻拦,一意孤行推行洋务运动。同治帝(梁烈唯 饰)年纪尚小,朝中虎视眈眈。清末的紫禁城内忧外患。李莲英如何全身而退,成为一代大太监?  本剧为2012年TVB台庆剧。
大太监粤语
导演:
/ 罗永贤
剧情:
  李莲英(黎耀祥 饰)与安德海(曹永廉 饰)同被前朝老太监刘多生(钟景辉 饰)收为徒弟。数年后,李莲英只是景仁宫中侍奉待罪妃子婉太嫔(李诗韵 饰)的一名小太监,而安德海却为西宫太后慈禧(米雪 饰)身边的红人。御药房太监姚双喜(黄浩然 饰)因出宫探母一事得罪总管太监陈福(岳华 饰)的舅甥彭三顺(陈国邦 饰),险些丧命。幸被李莲英所救,两人结为挚友。太监彭三顺睚眦必报,此后处处为难李莲英。婉太嫔在太监陈福的挑唆下,想起自己皇儿死因的蹊跷之处。恭亲王(张国强 饰)不顾慈禧阻拦,一意孤行推行洋务运动。同治帝(梁烈唯 饰)年纪尚小,朝中虎视眈眈。清末的紫禁城内忧外患。李莲英如何全身而退,成为一代大太监?  本剧为2012年TVB台庆剧。
影子大亨
导演:
/ 伊桑·科恩,乔尔·科恩
剧情:
  诺维尔(蒂姆·罗宾斯 Tim Robbins 饰)从大学毕业后便来到纽约街头找工作,缺乏经验的他只能在一家金融公司里担任一名收发室小职员。不久后总裁自杀身亡,公司的实权落入了老奸巨猾的董事会成员马斯伯(保罗·纽曼 Paul Newman 饰)手中,这本来没有诺维尔什么事,不料马斯伯为了达到他低价收购公司的目的,竟将看似愚蠢的诺维尔任命为他的傀儡总裁。而诺维尔此刻正在一门心思地研发他的新发明——呼啦圈,马斯伯想借此发明使公司的股票跌入冰点,不料呼啦圈推出后竟大肆流行,公司的股票直线上升。恼羞成怒的马斯伯开始在暗中大动手脚,将公司的局势搅得一落千丈,诺维尔也变成了众矢之的,甚至有可能被关进精神病院。绝望的他再次回到公司大楼的顶层,准备纵身一跃一了百了,然而就在此时,原已故去的前任总裁竟然出现了……
百慕大三角:多彩田园曲
导演:
/ 西村纯二
剧情:
  耀眼的聚光灯。可爱动人的轻飘飘服装。引人入迷的歌声,吸引目光的笑容。在大都会的舞台上,沐浴着炫目灯光的,是能在水中自由舞蹈的“人鱼偶像”。  远离这样的大都市,在恬静的巴雷尔村中聚集的,从未想过自己会摇身一变,化作明星的少女们,今天也为了一块蛋糕点心而闹得天翻地覆。
女大不中留1954
导演:
/ 大卫·里恩
剧情:
  故事发生在十九世纪的英国,霍布森(查尔斯·劳顿 Charles Laughton 饰)经营着一家鞋铺,辛辛苦苦拉扯着三个女儿玛姬(布伦达·德·班泽 Brenda De Banzie 饰)、爱丽丝(达芙妮·安德森 Daphne Anderson 饰)和维奇(普鲁内拉·斯凯尔斯 Prunella Scales 饰)长大,一转眼,三个姑娘都已经到了谈婚论嫁的年纪,但吝啬的霍布森并不准备支付女儿们的嫁妆。  玛姬爱上了鞋匠威利(约翰·米尔斯 John Mills 饰),尽管霍布森极力的反对这段不合时宜的感情,但独立好强的玛姬还是同威利结了婚。在玛姬的帮助下,威利的事业蒸蒸日上,很快便成为了霍布森最强劲的商业对手,与此同时,玛姬还帮助两个妹妹解决了嫁妆的难题。
大丈夫2
导演:
/ 钟晴
剧情:
  添(曾志伟 饰)、Dr Lee(陈小春 饰)、娇(张达明 饰)以及大学生阿仔(黄又南 饰)平日在老婆或女友面前总是毕恭毕敬,百依百顺。其实四人都心怀鬼胎,那就是在取得他们的另一半信任之后找机会出去鬼混。  Mary(毛舜筠 饰)、绮贞(原子鏸 饰)、娇妻(何超仪 饰)和阿Ling(林苑 饰)是四人的伴侣,一开始她们都以为自己的另一半对自己始终如一。但四人渐渐识穿了男人们的诡计,羞愤之余,四人订立了攻守同盟,决定一起出去鬼混,以牙还牙。  男人们知道了自己的另一半亦开始红杏出墙后,大为紧张,开始跟踪自己的老婆或女友。他们之间的危机最终能否顺利化解?
大丈夫2003
导演:
/ 彭浩翔
剧情:
  一天,郭天佑(曾志伟饰)、李永祥(陈小春饰)、徐娇(杜汶泽饰)及洪国波(贾宗超饰) 四人突然不约而同离开工作岗位,换上他们绝少穿着的黑色西装,搭上毫不起眼的普通的士,准备进行一项神秘行动:14小时的“偷食”行动。原来他们的老婆或恋人——一众太太团结伴到泰国拜佛,因而获得彻底自由的14小时。  他们小心策划,部署一切,务求不会浪费时间。如期出发后,行动却意外频生、处处碰壁,大家开始怀疑意外并非偶然,而是有人暗中破坏,甚至怀疑四人中有告密者存在。与此同时,一辆神秘车子更是一直跟踪着他们。原来四人的太太女友突然折返,打算联手截击他们的“偷食”行动。 “偷食”行动能否如期进行,又将如何收场呢?
恐怖热线之大头怪婴
导演:
/ 郑保瑞
剧情:
  Ben(吴镇宇)是香港一档电台节目《恐怖热线》的监制,忙于工作的他日渐疏忽女友Helen(周丽淇)。Helen是一名护士,曾瞒着Ben做掉腹中胎儿,此事令她难以释怀,时常会看到幻象。Mavis(何超仪)是美国电视新闻网络记者,她及摄影师等一行五人到港拍摄有关香港电台文化的特别节目,第一个研究对象便是《恐》,但Ben并不友好,只准他们在直播室外拍摄。  某晚,《恐》主持人接到自称Chris的男人来电,说1963年他与6个同学在西环踢足球时,无意中在球场附近的山洞内发现一只“大头怪婴”,当即吓得魂飞魄散,甚至信奉伊斯兰教的校长亦不能用手中的《可兰经》将之制服。Chris的电话引来始料未及的热烈回响,Ben与Mavis都决定对此展开深入调查,但两人新闻出发点有异。几乎同时,Helen所在的医院接收了受到过度惊吓的青少年Sam(李灿森),对他,Helen没像其他护士一样慌忙躲闪,相反亲爱有加。  Mavis和Ben依据有限线索找到老校长的养女Connie(张佳佳),从她口中得知,Chris不久前曾同6个男人看过老校长。随后《恐》直播时,主持人再次接到Chris的电话,但这次却是对他们的诅咒。不久,Mavis的摄影师离奇死去,他拍下的影像显示,当晚直播间里多出一个人影。Mavis和Ben展开更进一步调查,发现1961年的确有孕妇生下骇人的“大头怪婴”,Chris的6个同学也早已集体自杀。而Ben在向Helen求婚之后,Helen的行为却在某夜发生异变,她来到医院,将Sam带到一陌生地。
海上拖救大队
导演:
/ 内详
主演:
/ 内详 
剧情:
  Discovery's 'Shipwreck Men' features modern day pirates patrolling the coast of southern Florida - and the bounty they're after is boats in distress. Salvage companies scan the waters day and night. When trouble strikes they race into action, whether it's saving a sinking vessel, rescuing boats from dangerous hurricane storms or putting out a massive fire. While their intentions are good, it doesn't mean it isn't a cutthroat business.
直击311日本大浩劫
导演:
/ 内详
主演:
/ 内详 
剧情:
2011年3月11日,离日本东部海岸75哩之处发生芮氏规模9的大地震。海啸报同时发布,要当地沿岸居民迅速到高地避难。接下来的数小时,民众惊恐地看着大浪冲上岸,瞬问淹没家园,大水所经之处满目痍。整个过程被新闻工作者、政府官员、游客和众多人士拍摄记录下来!
末日倒数 地球大撤退
导演:
/ Ted Schillinger
主演:
/ 内详 
剧情:
  If we faced a countdown to destruction, could we build a spacecraft to take us to new and habitable worlds? Can we Evacuate Earth? NGC's two-hour special examines this terrifying but scientifically plausible scenario by exploring how we could unite to ensure the survival of the human race.
那些最伟大的比赛
导演:
/ 比尔·帕克斯顿
剧情:
  20世纪之初,高尔夫球还只是英国贵族和绅士们的游戏,底层人民没有资格染指其中,它无疑是身份和权力的象征。少年弗朗西斯·奥密特(Matthew Knight 饰)出身平民家庭,读书之余他经常担任球童贴补家用。在这一过程中,对高尔夫球的热爱悄悄在他的心中生根发芽。他勤奋努力,且天资聪颖,渐渐成长为一名出色的业余选手。1913年,弗朗西斯有幸参加绅士云集的公开赛,它不仅有机会与自己的偶像哈里·瓦顿(史蒂芬·迪雷恩 Stephen Dillane 饰)正面对决,还将成为改写高尔夫球史的重要人物……  本片改编自马克·弗罗斯特(Mark Frost)的同名畅销小说,取材于高尔夫球界的真实故事。
大虎2015
导演:
/ 朴勋政
剧情:
  讲述的是朝鲜日据时期,朝鲜最后一只老虎和最出色的名捕手千满德的故事。  崔岷植饰演的名捕手千满德是为了捕猎大虎而需要的人物,但是他很早以前就已经放下枪,和老虎一起守护智异山山君。  郑万植饰演的捕虎队队长因为日军的命令而必须赌上性命去捕猎大虎。  金尚浩饰演的是对于千满德父子 都很有感情的捕手七久一角。  和崔岷植搭档出演父子的则是成侑彬,曾在《没关系,是爱情啊》中饰演赵寅成的少年时代,还参演过电影《捉迷藏》。  《莫比乌斯》女主角李恩雨和崔岷植搭档出演夫妻,  曾出演《女儿》的玄盛敏出演七九的女儿。  日本演员大杉涟将出演日本高官,想带着朝鲜的最后一只老虎衣锦还乡回日本,所以下达了捕虎任务。  郑锡元将饰演带领捕虎队出征的日本军官,罗美兰饰演七九的妻子,  金洪波饰演千满德的药材商朋友。  曾在朴勋政导演的《新世界》中出演延边混混的吴正国和朴仁洙则出演捕虎队队员。
美国大革命
导演:
/ Kevin R. Hershberger
主演:
剧情:
  
费马大定理
导演:
/ 西蒙·辛格
主演:
剧情:
  本片从证明了费玛最后定理的安德鲁‧怀尔斯 Andrew Wiles开始谈起,描述了 Fermat's Last Theorm 的历史始末,往前回溯来看,1994年正是我在念大学的时候,当时完全没有一位教授在课堂上提到这件事,也许他们认为,一位真正的研究者,自然而然地会被数学吸引,然而对一位不是天才的学生来说,他需要的是老师的指引,引导他走向更高深的专业认知,而指引的道路,就在科普的精神上。  从费玛最后定理的历史中可以发现,有许多研究成果,都是研究人员燃烧热情,试图提出「有趣」的命题,然后再尝试用逻辑验证。  费玛最后定理:xn+yn=zn 当 n>2 时,不存在整数解  1. 1963年 安德鲁‧怀尔斯 Andrew Wiles被埃里克‧坦普尔‧贝尔 Eric Temple Bell 的一本书吸引,「最后问题 The Last Problem」,故事从这里开始。  2. 毕达哥拉斯 Pythagoras 定理,任一个直角三角形,斜边的平方=另外两边的平方和  x2+y2=z2  毕达哥拉斯三元组:毕氏定理的整数解  3. 费玛 Fermat 在研究丢番图 Diophantus 的「算数」第2卷的问题8时,在页边写下了註记  「不可能将一个立方数写成两个立方数之和;或者将一个四次幂写成两个四次幂之和;或者,总的来说,不可能将一个高於2次幂,写成两个同样次幂的和。」  「对这个命题我有一个十分美妙的证明,这里空白太小,写不下。」  4. 1670年,费玛 Fermat的儿子出版了载有Fermat註记的「丢番图的算数」  5. 在Fermat的其他註记中,隐含了对 n=4 的证明 => n=8, 12, 16, 20 ... 时无解  莱昂哈德‧欧拉 Leonhard Euler 证明了 n=3 时无解 => n=6, 9, 12, 15 ... 时无解  3是质数,现在只要证明费玛最后定理对於所有的质数都成立  但 欧基里德 证明「存在无穷多个质数」  6. 1776年 索菲‧热尔曼 针对 (2p+1)的质数,证明了 费玛最后定理 "大概" 无解  7. 1825年 古斯塔夫‧勒瑞-狄利克雷 和 阿得利昂-玛利埃‧勒让德 延伸热尔曼的证明,证明了 n=5 无解  8. 1839年 加布里尔‧拉梅 Gabriel Lame 证明了 n=7 无解  9. 1847年 拉梅 与 奥古斯汀‧路易斯‧科西 Augusti Louis Cauchy 同时宣称已经证明了 费玛最后定理  最后是刘维尔宣读了 恩斯特‧库默尔 Ernst Kummer 的信,说科西与拉梅的证明,都因为「虚数没有唯一因子分解性质」而失败  库默尔证明了 费玛最后定理的完整证明 是当时数学方法不可能实现的  10.1908年 保罗‧沃尔夫斯凯尔 Paul Wolfskehl 补救了库默尔的证明  这表示 费玛最后定理的完整证明 尚未被解决  沃尔夫斯凯尔提供了 10万马克 给提供证明的人,期限是到2007年9月13日止  11.1900年8月8日 大卫‧希尔伯特,提出数学上23个未解决的问题且相信这是迫切需要解决的重要问题  12.1931年 库特‧哥德尔 不可判定性定理  第一不可判定性定理:如果公理集合论是相容的,那么存在既不能证明又不能否定的定理。  => 完全性是不可能达到的  第二不可判定性定理:不存在能证明公理系统是相容的构造性过程。  => 相容性永远不可能证明  13.1963年 保罗‧科恩 Paul Cohen 发展了可以检验给定问题是不是不可判定的方法(只适用少数情形)  证明希尔伯特23个问题中,其中一个「连续统假设」问题是不可判定的,这对於费玛最后定理来说是一大打击  14.1940年 阿伦‧图灵 Alan Turing 发明破译 Enigma编码 的反转机  开始有人利用暴力解决方法,要对 费玛最后定理 的n值一个一个加以证明。  15.1988年 内奥姆‧埃尔基斯 Naom Elkies 对於 Euler 提出的 x4+y4+z4=w4 不存在解这个推想,找到了一个反例  26824404+153656394+1879604=206156734  16.1975年 安德鲁‧怀尔斯 Andrew Wiles 师承 约翰‧科次,研究椭圆曲线  研究椭圆曲线的目的是要算出他们的整数解,这跟费玛最后定理一样  ex: y2=x3-2 只有一组整数解 52=33-2  (费玛证明宇宙中指存在一个数26,他是夹在一个平方数与一个立方数中间)  由於要直接找出椭圆曲线是很困难的,为了简化问题,数学家採用「时鐘运算」方法  在五格时鐘运算中, 4+2=1  椭圆方程式 x3-x2=y2+y  所有可能的解为 (x, y)=(0, 0) (0, 4) (1, 0) (1, 4),然后可用 E5=4 来代表在五格时鐘运算中,有四个解  对於椭圆曲线,可写出一个 E序列 E1=1, E2=4, .....  17.1954年 至村五郎 与 谷山丰 研究具有非同寻常的对称性的 modular form 模型式  模型式的要素可从1开始标号到无穷(M1, M2, M3, ...)  每个模型式的 M序列 要素个数 可写成 M1=1 M2=3 .... 这样的范例  1955年9月 提出模型式的 M序列 可以对应到椭圆曲线的 E序列,两个不同领域的理论突然被连接在一起  安德列‧韦依 採纳这个想法,「谷山-志村猜想」  18.朗兰兹提出「朗兰兹纲领」的计画,一个统一化猜想的理论,并开始寻找统一的环链  19.1984年 格哈德‧弗赖 Gerhard Frey 提出  (1) 假设费玛最后定理是错的,则 xn+yn=zn 有整数解,则可将方程式转换为y2=x3+(AN-BN)x2-ANBN 这样的椭圆方程式  (2) 弗赖椭圆方程式太古怪了,以致於无法被模型式化  (3) 谷山-志村猜想 断言每一个椭圆方程式都可以被模型式化  (4) 谷山-志村猜想 是错误的  反过来说  (1) 如果 谷山-志村猜想 是对的,每一个椭圆方程式都可以被模型式化  (2) 每一个椭圆方程式都可以被模型式化,则不存在弗赖椭圆方程式  (3) 如果不存在弗赖椭圆方程式,那么xn+yn=zn 没有整数解  (4) 费玛最后定理是对的  20.1986年 肯‧贝里特 证明 弗赖椭圆方程式无法被模型式化  如果有人能够证明谷山-志村猜想,就表示费玛最后定理也是正确的  21.1986年 安德鲁‧怀尔斯 Andrew Wiles 开始一个小阴谋,他每隔6个月发表一篇小论文,然后自己独力尝试证明谷山-志村猜想,策略是利用归纳法,加上 埃瓦里斯特‧伽罗瓦 的群论,希望能将E序列以「自然次序」一一对应到M序列  22.1988年 宫冈洋一 发表利用微分几何学证明谷山-志村猜想,但结果失败  23.1989年 安德鲁‧怀尔斯 Andrew Wiles 已经将椭圆方程式拆解成无限多项,然后也证明了第一项必定是模型式的第一项,也尝试利用 依娃沙娃 Iwasawa 理论,但结果失败  24.1992年 修改 科利瓦金-弗莱契 方法,对所有分类后的椭圆方程式都奏效  25.1993年 寻求同事 尼克‧凯兹 Nick Katz 的协助,开始对验证证明  26.1993年5月 「L-函数和算术」会议,安德鲁‧怀尔斯 Andrew Wiles 发表谷山-志村猜想的证明  27.1993年9月 尼克‧凯兹 Nick Katz 发现一个重大缺陷  安德鲁‧怀尔斯 Andrew Wiles 又开始隐居,尝试独力解决缺陷,他不希望在这时候公布证明,让其他人分享完成证明的甜美果实  28.安德鲁‧怀尔斯 Andrew Wiles 在接近放弃的边缘,在彼得‧萨纳克的建议下,找到理查德‧泰勒的协助  29.1994年9月19日 发现结合 依娃沙娃 Iwasawa 理论与 科利瓦金-弗莱契 方法就能够完全解决问题  30.「谷山-志村猜想」被证明了,故得证「费玛最后定理」  ii  费马大定理  300多年以前,法国数学家费马在一本书的空白处写下了一个定理:“设n是大于2的正整数,则不定方程xn+yn=zn没有非零整数解”。  费马宣称他发现了这个定理的一个真正奇妙的证明,但因书上空白太小,他写不下他的证明。300多年过去了,不知有多少专业数学家和业余数学爱好者绞尽脑汁企图证明它,但不是无功而返就是进展甚微。这就是纯数学中最着名的定理—费马大定理。  费马(1601年~1665年)是一位具有传奇色彩的数学家,他最初学习法律并以当律师谋生,后来成为议会议员,数学只不过是他的业余爱好,只能利用闲暇来研究。虽然年近30才认真注意数学,但费马对数论和微积分做出了第一流的贡献。他与笛卡儿几乎同时创立了解析几何,同时又是17世纪兴起的概率论的探索者之一。费马特别爱好数论,提出了许多定理,但费马只对其中一个定理给出了证明要点,其他定理除一个被证明是错的,一个未被证明外,其余的陆续被后来的数学家所证实。这唯一未被证明的定理就是上面所说的费马大定理,因为是最后一个未被证明对或错的定理,所以又称为费马最后定理。  费马大定理虽然至今仍没有完全被证明,但已经有了很大进展,特别是最近几十年,进展更快。1976年瓦格斯塔夫证明了对小于105的素数费马大定理都成立。1983年一位年轻的德国数学家法尔廷斯证明了不定方程xn+yn=zn只能有有限多组解,他的突出贡献使他在1986年获得了数学界的最高奖之一费尔兹奖。1993年英国数学家威尔斯宣布证明了费马大定理,但随后发现了证明中的一个漏洞并作了修正。虽然威尔斯证明费马大定理还没有得到数学界的一致公认,但大多数数学家认为他证明的思路是正确的。毫无疑问,这使人们看到了希望。  为了寻求费马大定理的解答,三个多世纪以来,一代又一代的数学家们前赴后继,却壮志未酬。1995年,美国普林斯顿大学的安德鲁·怀尔斯教授经过8年的孤军奋战,用13  0页长的篇幅证明了费马大定理。怀尔斯成为整个数学界的英雄。  费马大定理提出的问题非常简单,它是用一个每个中学生都熟悉的数学定理——毕达  哥拉斯定理——来表达的。2000多年前诞生的毕达哥拉斯定理说:在一个直角三角形中,  斜边的平方等于两直角边的平方之和。即X2+Y2=Z2。大约在公元1637年前后 ,当费马在  研究毕达哥拉斯方程时,他写下一个方程,非常类似于毕达哥拉斯方程:Xn+Yn=Zn,当n  大于2时,这个方程没有任何整数解。费马在《算术》这本书的靠近问题8的页边处记下这  个结论的同时又写下一个附加的评注:“对此,我确信已发现一个美妙的证法,这里的空  白太小,写不下。”这就是数学史上着名的费马大定理或称费马最后的定理。费马制造了  一个数学史上最深奥的谜。  大问题  在物理学、化学或生物学中,还没有任何问题可以叙述得如此简单和清晰,却长久不  解。E·T·贝尔(Eric Temple Bell)在他的《大问题》(The Last Problem)一书中写到,  文明世界也许在费马大定理得以解决之前就已走到了尽头。证明费马大定理成为数论中最  值得为之奋斗的事。  安德鲁·怀尔斯1953年出生在英国剑桥,父亲是一位工程学教授。少年时代的怀尔斯  已着迷于数学了。他在后来的回忆中写到:“在学校里我喜欢做题目,我把它们带回家,  编写成我自己的新题目。不过我以前找到的最好的题目是在我们社区的图书馆里发现的。  ”一天,小怀尔斯在弥尔顿街上的图书馆看见了一本书,这本书只有一个问题而没有解答  ,怀尔斯被吸引住了。  这就是E·T·贝尔写的《大问题》。它叙述了费马大定理的历史,这个定理让一个又  一个的数学家望而生畏,在长达300多年的时间里没有人能解决它。怀尔斯30多年后回忆  起被引向费马大定理时的感觉:“它看上去如此简单,但历史上所有的大数学家都未能解  决它。这里正摆着我——一个10岁的孩子——能理解的问题,从那个时刻起,我知道我永  远不会放弃它。我必须解决它。”  怀尔斯1974年从牛津大学的Merton学院获得数学学士学位,之后进入剑桥大学Clare  学院做博士。在研究生阶段,怀尔斯并没有从事费马大定理研究。他说:“研究费马可能  带来的问题是:你花费了多年的时间而最终一事无成。我的导师约翰·科茨(John Coate  s)正在研究椭圆曲线的Iwasawa理论,我开始跟随他工作。” 科茨说:“我记得一位同事  告诉我,他有一个非常好的、刚完成数学学士荣誉学位第三部考试的学生,他催促我收其  为学生。我非常荣幸有安德鲁这样的学生。即使从对研究生的要求来看,他也有很深刻的  思想,非常清楚他将是一个做大事情的数学家。当然,任何研究生在那个阶段直接开始研  究费马大定理是不可能的,即使对资历很深的数学家来说,它也太困难了。”科茨的责任  是为怀尔斯找到某种至少能使他在今后三年里有兴趣去研究的问题。他说:“我认为研究  生导师能为学生做的一切就是设法把他推向一个富有成果的方向。当然,不能保证它一定  是一个富有成果的研究方向,但是也许年长的数学家在这个过程中能做的一件事是使用他  的常识、他对好领域的直觉。然后,学生能在这个方向上有多大成绩就是他自己的事了。  ”  科茨决定怀尔斯应该研究数学中称为椭圆曲线的领域。这个决定成为怀尔斯职业生涯中的  一个转折点,椭圆方程的研究是他实现梦想的工具。  孤独的战士  1980年怀尔斯在剑桥大学取得博士学位后来到了美国普林斯顿大学,并成为这所大学  的教授。在科茨的指导下,怀尔斯或许比世界上其他人都更懂得椭圆方程,他已经成为一  个着名的数论学家,但他清楚地意识到,即使以他广博的基础知识和数学修养,证明费马  大定理的任务也是极为艰巨的。  在怀尔斯的费马大定理的证明中,核心是证明“谷山-志村猜想”,该猜想在两个非  常不同的数学领域间建立了一座新的桥梁。“那是1986年夏末的一个傍晚,我正在一个朋  友家中啜饮冰茶。谈话间他随意告诉我,肯·里贝特已经证明了谷山-志村猜想与费马大  定理间的联系。我感到极大的震动。我记得那个时刻,那个改变我生命历程的时刻,因为  这意味着为了证明费马大定理,我必须做的一切就是证明谷山-志村猜想……我十分清楚  我应该回家去研究谷山-志村猜想。”怀尔斯望见了一条实现他童年梦想的道路。  20世纪初,有人问伟大的数学家大卫·希尔伯特为什么不去尝试证明费马大定理,他  回答说:“在开始着手之前,我必须用3年的时间作深入的研究,而我没有那么多的时间  浪费在一件可能会失败的事情上。”怀尔斯知道,为了找到证明,他必须全身心地投入到  这个问题中,但是与希尔伯特不一样,他愿意冒这个风险。  怀尔斯作了一个重大的决定:要完全独立和保密地进行研究。他说:“我意识到与费  马大定理有关的任何事情都会引起太多人的兴趣。你确实不可能很多年都使自己精力集中  ,除非你的专心不被他人分散,而这一点会因旁观者太多而做不到。”怀尔斯放弃了所有  与证明费马大定理无直接关系的工作,任何时候只要可能他就回到家里工作,在家里的顶  楼书房里他开始了通过谷山-志村猜想来证明费马大定理的战斗。  这是一场长达7年的持久战,这期间只有他的妻子知道他在证明费马大定理。  欢呼与等待  经过7年的努力,怀尔斯完成了谷山-志村猜想的证明。作为一个结果,他也证明了  费马大定理。现在是向世界公布的时候了。1993年6月底,有一个重要的会议要在剑桥大  学的牛顿研究所举行。怀尔斯决定利用这个机会向一群杰出的听众宣布他的工作。他选择  在牛顿研究所宣布的另外一个主要原因是剑桥是他的家乡,他曾经是那里的一名研究生。  1993年6月23日,牛顿研究所举行了20世纪最重要的一次数学讲座。两百名数学家聆  听了这一演讲,但他们之中只有四分之一的人完全懂得黑板上的希腊字母和代数式所表达  的意思。其余的人来这里是为了见证他们所期待的一个真正具有意义的时刻。演讲者是安  德鲁·怀尔斯。怀尔斯回忆起演讲最后时刻的情景:“虽然新闻界已经刮起有关演讲的风  声,很幸运他们没有来听演讲。但是听众中有人拍摄了演讲结束时的镜头,研究所所长肯  定事先就准备了一瓶香槟酒。当我宣读证明时,会场上保持着特别庄重的寂静,当我写完  费马大定理的证明时,我说:‘我想我就在这里结束’,会场上爆发出一阵持久的鼓掌声  。”  《纽约时报》在头版以《终于欢呼“我发现了!”,久远的数学之谜获解》为题报道  费马大定理被证明的消息。一夜之间,怀尔斯成为世界上最着名的数学家,也是唯一的数  学家。《人物》杂志将怀尔斯与戴安娜王妃一起列为“本年度25位最具魅力者”。最有创  意的赞美来自一家国际制衣大公司,他们邀请这位温文尔雅的天才作他们新系列男装的模  特。  当怀尔斯成为媒体报道的中心时,认真核对这个证明的工作也在进行。科学的程序要  求任何数学家将完整的手稿送交一个有声望的刊物,然后这个刊物的编辑将它送交一组审  稿人,审稿人的职责是进行逐行的审查证明。怀尔斯将手稿投到《数学发明》,整整一个  夏天他焦急地等待审稿人的意见,并祈求能得到他们的祝福。可是,证明的一个缺陷被发  现了。  我的心灵归于平静  由于怀尔斯的论文涉及到大量的数学方法,编辑巴里·梅休尔决定不像通常那样指定  2-3个审稿人,而是6个审稿人。200页的证明被分成6章,每位审稿人负责其中一章。  怀尔斯在此期间中断了他的工作,以处理审稿人在电子邮件中提出的问题,他自信这  些问题不会给他造成很大的麻烦。尼克·凯兹负责审查第3章,1993年8月23日,他发现了  证明中的一个小缺陷。数学的绝对主义要求怀尔斯无可怀疑地证明他的方法中的每一步都  行得通。怀尔斯以为这又是一个小问题,补救的办法可能就在近旁,可是6个多月过去了  ,错误仍未改正,怀尔斯面临绝境,他准备承认失败。他向同事彼得·萨克说明自己的情  况,萨克向他暗示困难的一部分在于他缺少一个能够和他讨论问题并且可信赖的人。经过  长时间的考虑后,怀尔斯决定邀请剑桥大学的讲师理查德·泰勒到普林斯顿和他一起工作  。  泰勒1994年1月份到普林斯顿,可是到了9月,依然没有结果,他们准备放弃了。泰勒  鼓励他们再坚持一个月。怀尔斯决定在9月底作最后一次检查。9月19日,一个星期一的早  晨,怀尔斯发现了问题的答案,他叙述了这一时刻:“突然间,不可思议地,我有了一个  难以置信的发现。这是我的事业中最重要的时刻,我不会再有这样的经历……它的美是如  此地难以形容;它又是如此简单和优美。20多分钟的时间我呆望它不敢相信。然后白天我  到系里转了一圈,又回到桌子旁看看它是否还在——它还在那里。”  这是少年时代的梦想和8年潜心努力的终极,怀尔斯终于向世界证明了他的才能。世  界不再怀疑这一次的证明了。这两篇论文总共有130页,是历史上核查得最彻底的数学稿  件,它们发表在1995年5月的《数学年刊》上。怀尔斯再一次出现在《纽约时报》的头版  上,标题是《数学家称经典之谜已解决》。约翰·科茨说:“用数学的术语来说,这个最  终的证明可与分裂原子或发现DNA的结构相比,对费马大定理的证明是人类智力活动的一  曲凯歌,同时,不能忽视的事实是它一下子就使数学发生了革命性的变化。对我说来,安  德鲁成果的美和魅力在于它是走向代数数论的巨大的一步。”  声望和荣誉纷至沓来。1995年,怀尔斯获得瑞典皇家学会颁发的Schock数学奖,199  6年,他获得沃尔夫奖,并当选为美国科学院外籍院士。  怀尔斯说:“……再没有别的问题能像费马大定理一样对我有同样的意义。我拥有如  此少有的特权,在我的成年时期实现我童年的梦想……那段特殊漫长的探索已经结束了,  我的心已归于平静。”  费马大定理只有在相对数学理论的建立之后,才会得到最满意的答案。相对数学理论没有完成之前,谈这个问题是无力地.因为人们对数量和自身的认识,还没有达到一定的高度.  iii  费马大定理与怀尔斯的因果律-美国公众广播网对怀尔斯的专访  358年的难解之谜  数学爱好者费马提出的这个问题非常简单,它用一个每个中学生都熟悉的数学定理——毕达哥拉斯定理来表达。2000多年前诞生的毕达哥拉斯定理说:在一个直角三角形中,斜边的平方等于两个直角边的平方之和。即X2+Y2=Z2。大约在公元1637年前后 ,当费马在研究毕达哥拉斯方程时,他在《算术》这本书靠近问题8的页边处写下了这段文字:“设n是大于2的正整数,则不定方程xn+yn=zn没有非整数解,对此,我确信已发现一个美妙的证法,但这里的空白太小,写不下。”费马习惯在页边写下猜想,费马大定理是其中困扰数学家们时间最长的,所以被称为Fermat’s Last Theorem(费马最后的定理)——公认为有史以来最着名的数学猜想。  在畅销书作家西蒙·辛格(Simon Singh)的笔下,这段神秘留言引发的长达358年的猎逐充满了惊险、悬疑、绝望和狂喜。这段历史先后涉及到最多产的数学大师欧拉、最伟大的数学家高斯、由业余转为职业数学家的柯西、英年早逝的天才伽罗瓦、理论兼试验大师库默尔和被誉为“法国历史上知识最为高深的女性”的苏菲·姬尔曼……法国数学天才伽罗瓦的遗言、日本数学界的明日之星谷山丰的神秘自杀、德国数学爱好者保罗·沃尔夫斯凯尔最后一刻的舍死求生等等,都仿佛是冥冥间上帝导演的宏大戏剧中的一幕,为最后谜底的解开埋下伏笔。终于,普林斯顿的怀尔斯出现了。他找到谜底,把这出戏推向高潮并戛然而止,留下一段耐人回味的传奇。  对怀尔斯而言,证明费马大定理不仅是破译一个难解之谜,更是去实现一个儿时的梦想。“我10岁时在图书馆找到一本数学书,告诉我有这么一个问题,300多年前就已经有人解决了它,但却没有人看到过它的证明,也无人确信是否有这个证明,从那以后,人们就不断地求证。这是一个10岁小孩就能明白的问题,然后历史上诸多伟大的数学家们却不能解答。于是从那时起,我就试过解决它,这个问题就是费马大定理。”  怀尔斯于1970年先后在牛津大学和剑桥大学获得数学学士和数学博士学位。“我进入剑桥时,我真正把费马大定理搁在一边了。这不是因为我忘了它,而是我认识到我们所掌握的用来攻克它的全部技术已经反复使用了130年。而这些技术似乎没有触及问题根本。”因为担心耗费太多时间而一无所获,他“暂时放下了”对费马大定理的思索,开始研究椭圆曲线理论——这个看似与证明费马大定理不相关的理论后来却成为他实现梦想的工具。  时间回溯至20世纪60年代,普林斯顿数学家朗兰兹提出了一个大胆的猜想:所有主要数学领域之间原本就存在着的统一的链接。如果这个猜想被证实,意味着在某个数学领域中无法解答的任何问题都有可能通过这种链接被转换成另一个领域中相应的问题——可以被一整套新方案解决的问题。而如果在另一个领域内仍然难以找到答案,那么可以把问题再转换到下一个数学领域中……直到它被解决为止。根据朗兰兹纲领,有一天,数学家们将能够解决曾经是最深奥最难对付的问题——“办法是领着这些问题周游数学王国的各个风景胜地”。这个纲领为饱受哥德尔不完备定理打击的费马大定理证明者们指明了救赎之路——根据不完备定理,费马大定理是不可证明的。  怀尔斯后来正是依赖于这个纲领才得以证明费马大定理的:他的证明——不同于任何前人的尝试——是现代数学诸多分支(椭圆曲线论,模形式理论,伽罗华表示理论等等)综合发挥作用的结果。20世纪50年代由两位日本数学家(谷山丰和志村五郎)提出的谷山—志村猜想(Taniyama-Shimura conjecture)暗示:椭圆方程与模形式两个截然不同的数学岛屿间隐藏着一座沟通的桥梁。随后在1984年,德国数学家格哈德·费赖(Gerhard Frey)给出了如下猜想:假如谷山—志村猜想成立,则费马大定理为真。这个猜想紧接着在1986年被肯·里贝特(Ken Ribet)证明。从此,费马大定理不可摆脱地与谷山—志村猜想链接在一起:如果有人能证明谷山—志村猜想(即“每一个椭圆方程都可以模形式化”),那么就证明了费马大定理。  “人类智力活动的一曲凯歌”  怀尔斯诡秘的行踪让普林斯顿的着名数学家同事们困惑。彼得·萨奈克(Peter Sarnak)回忆说:“ 我常常奇怪怀尔斯在做些什么?……他总是静悄悄的,也许他已经‘黔驴技穷’了。”尼克·凯兹则感叹到:“一点暗示都没有!”对于这次惊天“大预谋”,肯·里比特(Ken Ribet)曾评价说:“这可能是我平生来见过的唯一例子,在如此长的时间里没有泄露任何有关工作的信息。这是空前的。  1993年晚春,在经过反复的试错和绞尽脑汁的演算,怀尔斯终于完成了谷山—志村猜想的证明。作为一个结果,他也证明了费马大定理。彼得·萨奈克是最早得知此消息的人之一,“我目瞪口呆、异常激动、情绪失常……我记得当晚我失眠了”。  同年6月,怀尔斯决定在剑桥大学的大型系列讲座上宣布这一证明。 “讲座气氛很热烈,有很多数学界重要人物到场,当大家终于明白已经离证明费马大定理一步之遥时,空气中充满了紧张。” 肯·里比特回忆说。巴里·马佐尔(Barry Mazur)永远也忘不了那一刻:“我之前从未看到过如此精彩的讲座,充满了美妙的、闻所未闻的新思想,还有戏剧性的铺垫,充满悬念,直到最后到达高潮。”当怀尔斯在讲座结尾宣布他证明了费马大定理时,他成了全世界媒体的焦点。《纽约时报》在头版以《终于欢呼“我发现了!”久远的数学之谜获解》(“At Last Shout of ‘Eureka!’ in Age-Old Math Mystery”)为题报道费马大定理被证明的消息。一夜之间,怀尔斯成为世界上唯一的数学家。《人物》杂志将怀尔斯与戴安娜王妃一起列为“本年度25位最具魅力者”。  与此同时,认真核对这个证明的工作也在进行。遗憾的是,如同这之前的“费马大定理终结者”一样,他的证明是有缺陷的。怀尔斯现在不得不在巨大的压力之下修正错误,其间数度感到绝望。John Conway曾在美国公众广播网(PBS)的访谈中说: “当时我们其他人(怀尔斯的同事)的行为有点像‘苏联政体研究者’,都想知道他的想法和修正错误的进展,但没有人开口问他。所以,某人会说,‘我今天早上看到怀尔斯了。’‘他露出笑容了吗?’‘他倒是有微笑,但看起来并不高兴。’”  撑到1994年9月时,怀尔斯准备放弃了。但他临时邀请的研究搭档泰勒鼓励他再坚持一个月。就在截止日到来之前两周, 9月19日 ,一个星期一的早晨,怀尔斯发现了问题的答案,他叙述了这一时刻:“突然间,不可思议地,我发现了它……它美得难以形容,简单而优雅。我对着它发了20多分钟呆。然后我到系里转了一圈,又回到桌子旁看看它是否还在那里——它确实还在那里。”  怀尔斯的证明为他赢得了最慷慨的褒扬,其中最具代表性的是他在剑桥时的导师、着名数学家约翰·科茨的评价:“它(证明)是人类智力活动的一曲凯歌”。  一场旷日持久的猎逐就此结束,从此费马大定理与安德鲁·怀尔斯的名字紧紧地被绑在了一起,提到一个就不得不提到另外一个。这是费马大定理与安德鲁·怀尔斯的因果律。  历时八年的最终证明  在怀尔斯不多的接受媒体采访中,美国公众广播网(PBS)NOVA节目对怀尔斯的专访相当精彩有趣,本文节选部分以飨读者。  七年孤独  NOVA:通常人们通过团队来获得工作上的支持,那么当你碰壁时是怎么解决问题的呢?  怀尔斯:当我被卡住时我会沿着湖边散散步,散步的好处是使你会处于放松状态,同时你的潜意识却在继续工作。通常遇到困扰时你并不需要书桌,而且我随时把笔纸带上,一旦有好主意我会找个长椅坐下来打草稿……  NOVA:这七年一定交织着自我怀疑与成功……你不可能绝对有把握证明。  怀尔斯:我确实相信自己在正确的轨道上,但那并不意味着我一定能达到目标——也许仅仅因为解决难题的方法超出现有的数学,也许我需要的方法下个世纪也不会出现。所以即便我在正确的轨道上,我却可能生活在错误的世纪。  NOVA:最终在1993年,你取得了突破。  怀尔斯:对,那是个5月末的早上。Nada,我的太太,和孩子们出去了。我坐在书桌前思考最后的步骤,不经意间看到了一篇论文,上面的一行字引起了我的注意。它提到了一个19世纪的数学结构,我霎时意识到这就是我该用的。我不停地工作,忘记下楼午饭,到下午三四点时我确信已经证明了费马大定理,然后下楼。Nada很吃惊,以为我这时才回家,我告诉她,我解决了费马大定理。  最后的修正  NOVA:《纽约时报》在头版以《终于欢呼“我发现了!”,久远的数学之谜获解》,但他们并不知道这个证明中有个错误。  怀尔斯:那是个存在于关键推导中的错误,但它如此微妙以至于我忽略了。它很抽象,我无法用简单的语言描述,就算是数学家也需要研习两三个月才能弄懂。  NOVA:后来你邀请剑桥的数学家理查德·泰勒来协助工作,并在1994年修正了这个最后的错误。问题是,你的证明和费马的证明是同一个吗?  怀尔斯:不可能。这个证明有150页长,用的是20世纪的方法,在费马时代还不存在。  NOVA:那就是说费马的最初证明还在某个未被发现的角落?  怀尔斯:我不相信他有证明。我觉得他说已经找到解答了是在哄自己。这个难题对业余爱好者如此特别在于它可能被17世纪的数学证明,尽管可能性极其微小。  NOVA:所以也许还有数学家追寻这最初的证明。你该怎么办呢?  怀尔斯:对我来说都一样,费马是我童年的热望。我会再试其他问题……证明了它我有一丝伤感,它已经和我们一起这么久了……人们对我说“你把我的问题夺走了”,我能带给他们其他的东西吗?我感觉到有责任。我希望通过解决这个问题带来的兴奋可以激励青年数学家们解决其他许许多多的难题。  iv  谷山-志村定理(Taniyama-Shimura theorem)建立了椭圆曲线(代数几何的对象)和模形式(某种数论中用到的周期性全纯函数)之间的重要联系。虽然名字是从谷山-志村猜想而来,定理的证明是由安德鲁·怀尔斯, Christophe Breuil, Brian Conrad, Fred Diamond,和Richard Taylor完成.  若p是一个质数而E是一个Q(有理数域)上的一个椭圆曲线,我们可以简化定义E的方程模p;除了有限个p值,我们会得到有np个元素的有限域Fp上的一个椭圆曲线。然后考虑如下序列  ap = np − p,  这是椭圆曲线E的重要的不变量。从傅里叶变换,每个模形式也会产生一个数列。一个其序列和从模形式得到的序列相同的椭圆曲线叫做模的。 谷山-志村定说:  "所有Q上的椭圆曲线是模的"。  该定理在1955年9月由谷山丰提出猜想。到1957年为止,他和志村五郎一起改进了严格性。谷山于1958年自杀身亡。在1960年代,它和统一数学中的猜想Langlands纲领联系了起来,并是关键的组成部分。猜想由André Weil于1970年代重新提起并得到推广,Weil的名字有一段时间和它联系在一起。尽管有明显的用处,这个问题的深度在后来的发展之前并未被人们所感觉到。  在1980年代当Gerhard Freay建议谷山-志村猜想(那时还是猜想)蕴含着费马最后定理的时候,它吸引到了不少注意力。他通过试图表明费尔马大定理的任何范例会导致一个非模的椭圆曲线来做到这一点。Ken Ribet后来证明了这一结果。在1995年,Andrew Wiles和Richard Taylor证明了谷山-志村定理的一个特殊情况(半稳定椭圆曲线的情况),这个特殊情况足以证明费尔马大定理。  完整的证明最后于1999年由Breuil,Conrad,Diamond,和Taylor作出,他们在Wiles的基础上,一块一块的逐步证明剩下的情况直到全部完成。  数论中类似于费尔马最后定理得几个定理可以从谷山-志村定理得到。例如:没有立方可以写成两个互质n次幂的和, n ≥ 3. (n = 3的情况已为欧拉所知)  在1996年三月,Wiles和Robert Langlands分享了沃尔夫奖。虽然他们都没有完成给予他们这个成就的定理的完整形式,他们还是被认为对最终完成的证明有着决定性影响。
大帅哥国语
导演:
/ 徐正康
剧情:
  故事发生在二十世纪初满清灭亡后军阀割据的动荡时局下,小小伍長狄奇(張衛健),因一次拯救大元帥蒙大同,被連升七級成為旅長,从此负责管理昇威鎮。其他三位盤踞昇威鎮外圍的軍閥,氣得眼裏噴火,出尽暗招對付他,狄奇幸得三位出生入死的軍隊隊員馬炭(洪永城)、羅義(徐榮)、冬來兄弟(李嘉)同心抗敵,還威迫利誘敵對的武器專才顧落蘆(曹永廉)加盟,五人於昇威鎮才能站穩陣腳。可是,狄奇三位太太葉天嬌(譚凱琪)、艾妞(楊秀惠)及章沅婉(蔡思貝)在家中爭寵,沅婉更是革命黨員,狄奇明知其身份仍把她留在身邊,再加上軍營中有人野心勃勃,使昇威鎮危機四伏……
大帅哥粤语
导演:
/ 徐正康
剧情:
  故事发生在二十世纪初满清灭亡后军阀割据的动荡时局下,小小伍長狄奇(張衛健),因一次拯救大元帥蒙大同,被連升七級成為旅長,从此负责管理昇威鎮。其他三位盤踞昇威鎮外圍的軍閥,氣得眼裏噴火,出尽暗招對付他,狄奇幸得三位出生入死的軍隊隊員馬炭(洪永城)、羅義(徐榮)、冬來兄弟(李嘉)同心抗敵,還威迫利誘敵對的武器專才顧落蘆(曹永廉)加盟,五人於昇威鎮才能站穩陣腳。可是,狄奇三位太太葉天嬌(譚凱琪)、艾妞(楊秀惠)及章沅婉(蔡思貝)在家中爭寵,沅婉更是革命黨員,狄奇明知其身份仍把她留在身邊,再加上軍營中有人野心勃勃,使昇威鎮危機四伏……
酿酒大师 第一季
导演:
/ Bengt Anderson
主演:
剧情:
  Sam Calagione, the founder and head of Dogfish Head Brewery in Milton, Delaware, and his staff as they searched the world for new, ancient, and imaginative inspirations for beers.
大灌篮
导演:
/ 朱延平
剧情:
  世杰(周杰伦 饰)因为在外惹事而被功夫学校开除,他是一个弃婴,从来不曾离开过学校在外闯荡。虽然学校有着不学无术的校长、古怪的四大师叔,仍然是世杰的庇护所。在外流浪的第一晚,就因为把汽水罐扔进垃圾桶的本领被立叔(曾志伟 饰)看中——立叔生活潦倒,然而鬼点子多多,他帮世杰设计了一个“打篮球寻亲”的计划,利用志杰的特长在赚钱之余也名声远扬。然而篮球队是需要队长丁伟(陈柏霖 饰)许可才能进入,丁伟妹妹莉莉正是志杰暗恋的女孩,莉莉暗恋的却是中锋萧岚。世杰的天才让他轻松地进入篮球队,也让球队轻松地打进了大学篮球赛的冠军争夺赛。即将跟老对手李天——以前的战友、如今的敌手——交锋,世杰才明白丁伟的颓废不仅由于李天抢走了自己的女朋友,还在篮球场上让自己一败涂地。这不仅是一场篮球战,还是一场心理战。
大搜查之女
导演:
/ 麦兆辉,庄文强
剧情:
  33岁还未结婚的香港女警司徒慕莲(郑秀文饰)一直为自己的婚事发愁。男友十年前的承诺,现在成了她与同事间的笑谈。一日,走私集团的头领霍青松(陈奕迅饰)的儿子被绑架,司徒慕莲奉命处理这宗案件。但霍青松一家为避免因走私之事被警方控告,处处表现出不合作的态度,而此时司徒慕莲发现自己有了身孕。  黑白两道在一间大屋下貌和神离,霍家上下各自心怀暗计,同时,大陆警方也传来了联合破案的消息。作为“剩女”的司徒慕莲、作为警察的司徒慕莲,她到底能否解决眼前面对的一切?
道歉大师
导演:
/ 水田伸生
剧情:
  在海外学习法律归来的仓持典子(井上真央 饰)撞坏黑道的豪车,为避免卖身还债,她求助于自称“道歉师”的黑岛让(阿部隆史 饰)。经营东京道歉中心的黑岛以极其专业的技巧圆满解除这一危机,之后典子也作为员工效力黑岛旗下。性格迥异的二人携手搞定了花哨白领沼田卓也(冈田将生 饰)的性骚扰案,知名演员南部哲郎(高桥克实 饰)之子的打人事件以及律界精英箕轮正臣(竹野内丰 饰)内心深藏多年的烦恼。  下跪谢罪作为国粹,经黑岛得到了极大的发扬,甚至他还被请去解决日本和蒙坦王国之间的国际纠纷。然而一向轻车熟路的他,却遇到了从业以来最大的挑战……
古今大战秦俑情
导演:
/ 程小东
剧情:
  李碧华的妙笔在时空的流转下谱写出一段可歌可泣、跨越古今三代的传奇爱情。  公元前二百多年,秦始皇暴虐无道,民不聊生。方士徐福骗得始皇信任,征召众多童男童女东渡蓬莱寻取长生仙药。曾因搭救秦始皇而被封官赐剑的郎中令蒙天放(张艺谋饰)与应征少女韩冬儿(巩俐饰)一见钟情,偷尝禁果,以欺君之罪被赐死。行刑前,冬儿暗将徐福炼就的长生不老金丹送入蒙天放口中,自己投身窑炉,殉情而死。蒙天放则被泥封为俑,置于皇陵。  20世纪30年代,冬儿转世成为三流影星朱莉莉。剧组前往秦始皇陵附近拍摄电影。莉莉发现自己暗恋的大明星白云飞(于荣光饰)盗掘皇陵的勾当。白云飞为杀人灭口,驾机携莉莉飞入空中。莉莉误将仪表盘打破,随机栽入秦始皇陵,使沉睡地下两千年的蒙天放得以复苏,并与闯入墓中的白云飞等盗墓贼展开搏斗......
大红灯笼高高挂
导演:
/ 张艺谋
剧情:
  大学刚读半年的颂莲(巩俐)被贪钱的母亲逼迫着嫁进陈家大院,成了老爷的第四房姨太。陈府有老规矩,姨太太们傍晚时分要站在自已的屋子前,等待下人送来的意味被老爷“临幸”的大红灯笼。  起初因为“新人”身份,颂莲得到老爷最多宠幸,但也因此被其它三位姨太太尤其笑里藏刀的二姨太(曹翠芬)挤兑得叫苦不迭。因为涉世不深,生性反叛好强的颂莲急欲争一口气,使计又成老爷身边红人,不想计被看穿,终败于二姨太手下酿成悲剧。而三姨太(何赛飞)的经历虽与颂莲迥异,却也殊途同归逃不出宿命。
大逃杀
导演:
/ 深作欣二
剧情:
  为了培养出忠实效忠于成人、在逆境中坚忍不拔的青少年一代,日本政府出台《BR》法案。每年都从全国学校随机抽出一个班级的同学,前往荒岛进行生存极限挑战——老师发给学生地图、粮食和各式武器,令他们自相残杀,直到存活下来的最后一个,才能离开荒岛。接下来,残酷的游戏规则和令人绝望的生存条件,使班级里的年轻人开始了相互杀戮。善良或者凶残,主动出击或者被动防守, 同学们开始了各自的计划,人性的丑恶在血腥的死亡中暴露无遗。  大逃杀的游戏在荒岛上壮烈上演。究竟学生们的宿命如何,谁才是最后的存活者。
一个头两个大
导演:
/ 博比·法雷里,彼得·法雷里
剧情:
  查理(金•凯瑞 饰)是一名善良的巡警,他的妻子与别人偷情生下三个儿子后与情人私奔了。可是查理仍把三个儿子视为己出,儿子们也十分尊敬这个老爸。镇上的人们都欺负查理的善良,终于隐藏在查理体内的另一个狠角色——阿庆出现了。阿庆与查理截然不同,他到处捣乱,到处生事。  警方为查理检查,发现他患上了精神分裂,需要用药物治疗。这时查理要护送美女伊莲(芮妮•齐薇格 饰)回去纽约,可是伊莲的前老板狄克所做的不法事情被举报了,他认为举报者就是伊莲,于是狄克买通了警察等人,誓要杀死伊莲。  伊莲求助与查理,于是两人还有阿庆一起开展了一段亡命之旅。查理的药却丢在了旅馆里,于是一路上查理与阿庆毫无预兆的更换着,更复杂的是查理与阿庆都爱上了伊莲,查理与阿庆争风吃醋,争斗不断。而警察与狄克一直穷追不舍查理他们……
大自然发威时
导演:
/ 内详
主演:
/ 内详 
剧情:
  Man runs with hand in front of face away from explosion as seen on Against The Elements (DCL)  Against the Elements reveals the science behind the most heart-stopping natural disasters ever captured on camera.  Discovery Channel’s groundbreaking forensic investigations reveal what caused these catastrophes and what we've learned from past disasters to protect us in the future.  We'll meet the people who survived against overwhelming odds and we'll talk to scientists and experts who've dedicated their lives to understanding these amazing natural phenomena.  The forces of earth, water, wind and fire impact us all every day ... sometimes benignly, sometimes deadly. And it's in that instant, that moment when ordinary weather turns extraordinary, that we realise life is an ongoing battle ... Against the Elements.